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ABSTRACT

Employing arecently proposed “multi-wave interaction” theory [JIF'M, 243, 623-625],
spectra of capillary-gravity waves are derived, This case is characterized by arather high
degree of nonlinearity and a complicated dispersion law. The resultant absence of scale
invariance makes this and some other problems of wave turbulence (e.g., nonlinear Rossby
waves) intractable by small-perturbation techniques, even in the weak-turbulence limit.
The analytical solution obtained in the present work is shown to be in good agreement with
experimental data, Its low- and high-frequency limits yield power-laws characterizing
spectra of purely gravity and capillary waves, respectively. In the limits of weak and
strong nonlincarity, these reduce to the Zakharov-Filonenko and Phillips spectra,
respectivel y.
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L__Introduction

"The subject of this paper isturbulence of surface gravity-capillary waves, although the
formalism can be applied to other problems of nonlincar wave dynamics, such as internal
waves, Rossby waves, acoustic turbulence, etc. The weak turbulence theory (W'I-I")
presently available for these problems [Zakharov, 1.'vov and Falkovich, 1992] proved
successful in many cases. However, some of its constraints greatly limit its scope. Duc to
formidable mathematical difficulties, WI'I' cannot account for higher-order nonlinear
effects. Besides, WTT requires scale invariance (as yielded by a power-law type of
dispersion law) and Idealization of externa sources and sinks - m yield practical results
even for weakly nonlinear problems. Therefore, some intuitive and less formal approaches
may prove more useful in many cases. An example s given by Phillips [ 1985] where
weak turbulence of surface gravity waves is considered with the source functions
continuously distributed in the wavenumber space. A similar approach, but going beyond
the weak turbulence limit (and called the "multiwave interaction theory,” or MIT for short)
was suggested recently [Glazman, 1992] to explain observed variations in the exponent for
power law spectra of surface gravity waves. The Kolmogorov assumption of locality of
nonlinear wave-wave interactionsis crucial in these theories. Provided this assumption
remains approximately valid for an increased number of the resonantly Fourier
components, MIT could in principle be applied to a broad class of problems. Indeed, it
does not require the lowest degree of nonlinearity, simple dispersion laws or simple
expressions for the wave energy density, and it can be used for weakly nonconservative
systems - as demonstrated earlier. However, due to its heuristic nature, MIT requires
thorough experimental verification.

The case of capillary-gravity waves is characterized by a highly complex expression for
the potential energy,

u==1pg j ndx+op [ (141 =1y dx (1.1)
where 1=1)(x,t) is the elevation of the fluid surface above the zero-mean level, g isthe
acceleration of gravity, and o is the coefficient of surface tension, 7', divided by fluid
density p. The dispersion law is

©? = gk+ ok’ | (1.2)

which, while permitting three-wave resonant interactions, eliminates scale-invarifincc
(actualy, self-affinity) of the wave field. Characteristic wavelengths at which (1. 1) and




(1 .2) are relevant extend from tenths and up to tenor more centimeters - the waves
amenable to accurate €laborator investigation. Thus, nlike other examples of wave
turbulence, the capillary -gravity waves are highly interesting as atest case. Besides, these
waves are primarily responsible for radar backscatter by the ocean surface, and thus are of
great practical interest.

In section 2, the theoretical approach is briefly reviewed emphasizing afew important
points that escaped the author’ s attention in the earlier paper [Glazman, 1992]. Spectra of
capillary-gravity waves are derived in section 3, and experimental comparison iS presented
in section 4.

2. Multiwave-interaction theorv for surface gravity-capillary waves

I.et us consider a conservative spectra] flux of wave energy. The external energy
source acts at lower frequencies - outside our inertial subrange. Therefore, a specific
mechanism of wave generation is not addressed here. The rate Q of energy input, assumed
to be known, equals the rate of energy transfer down the spectrum. Hollowing the earlier
reasoning [Glazman, 1992], Q is related to the characteristic t ime of nonlinear wave-wave
interaction (the “turnover time"), t,, and the characteristic energy E, transferred from a
cascade step n to step (n+ 1) by

pQ=E, /1, (2.1)

where the water density p appears because Q is taken per unit mass of water. Provided
E, and t); can be expressed in terms of &, @ and wave amplitude a, equation (2. 1)
allows one to derive the spectrum by means of clement ary algebra (e.g., [ Frisch et a.,
1978]). Let us express these parameters in terms of the relevant quantitics.

An approximate equi-partition of encrgy between the kinetic and the potential parts
allows one to write the surface density of the total wave energy, E, as

E= p[ g<7]2> + 0((\71))2 )] (2.2)
where the angular brackets denote ensemble average. To pass from (1.1) to (2.2) wc
assumed (Vn)2> << 1which is reasonably well justified for natural seas (e.g., [Cox and

Munk, 1954]). Validity of this assumption for a laboratory environment will be discussed
insection4. The energy F is related to the spectral density of the wave energy by:
E=[S(w)dw = [|F(k, O)kdOdk , (2.3)
where the integration is carried out over all wavcnLiinbers/frequencies. Here, S(w) isthe
frequency spectrum and F(k, 0) is the two-dimensional wavenumber spectrum of the

wave energy.
The amount of energy, £, transferred by me cascade mechanism is estimated as:




Oy
E,= [S(w)dw (2.4
.
where(w,,, ®,,,,) is the width of a cascade step (which must be much smaller than the

width of the inertial range), and the ratio r = @,/ @, is constant and sufficiently greater
than unity - as required by the assumption of locality of wave-wave interactions in the
frequency space. Indeed, differentiating (2,4) over @, yields
—~dE, | dw,, = $(0,) rS(ra,) = S(w,)[1-* r' *-p] , where the latter equality is valid for
wave spectra of type S(w) « Cop. Therefore, provided the spectrum rolls off sufficiently
fast (i.e, r'"? << 1), we have:

S(6)) = ~dE(w) / dw (2.5)

Although the spectrum being derived here has a more complicated shape than that given
by ar-P, the above approximation can be easily checked a posteriori. From (2.2) itis
obvious that £, for gravity-capillary waves can be written as

E, ~ plgal + o(a k)1 (2.6)
11ere, ap is the Fourier amplitude of surface oscillation at the frequency/wavcnun~ber
scales wy; and kp , corresponding to the N -th step in the spectral cascade.

The derivation of the turnover time is formally based on the scaling of the collision
integral in the kinet ic equat ion [Zakharov and 1 .'vov, 1975; Larraza et al, 1990] for the
wave action spectral transfer. It isalso useful to introduce this timescale in amore
general, athough Icss formal fashion. To thisend we notice that the nonlinearity of wave
processes is measured by the ratio, &, of the fluid particle velocity, u, to the wave phase
velocity, 'k [ Witham, 1974]. Since fluid particles in a surface wave execute an
approximately orbital motion in the vertical plane with the radius equal to the wave
amplitude and the period 2/w, the value of u at agiven scale is estimated as a@;; .
Respectively, the ratio u/(c/w) is

u a,o

-— n n n

£, = = A=
w,/lk ok,

This quantity represents the small parameter in deterministic perturbation theories.

However, since the kinetic equation for the wave action, N(k) =F(k)/w, (or wave energy,

ak (2.7)

nn

F'(k)) spectral transfer is derived for second statistical moments of the fields, the equations
of statistical theory are developed in powers of £2. Terms (i.e., collision integrals) of order
€2 correspond to three-wave interactions, while each additional Iourier component
accounted for in the interaction integral adds ncw terms which arc £2 times as great as a
preceding term. “I’hev-th termis of order £"?. Respectively, the characteristic time of

nonlinear wave-wave interactions increases as the number of interacting harmonics grows.




Yor 3-wave interactions, thistimeis given by 1™ = we?, and for an arbitrary number, v,
we have [Larrazact a., 1990]:

1!~ g2 (2.8)
Yormally, the kinetic equation is written as
ON/d+V, e TK) = p(K), (2.9)

where p(Kk) is the spectral density of the input flux of wave action (from wind), and
V,+ 7'(k) denotes the spectral density of the action flux due to al wave-wave interactions
to order v:

Ve T7K)= L+ 1+...41, (2.10)
1, are collision integrals accounting for interactions among v waves satisfying resonance

conditions
0, *r . o, =0

k,xk,t. .tk =0
(non-resonant terms can be eliminated by appropriate canonica transformations [Zakharov
ct al., 1992]). For gravity waves, the minimum number of resonantly interacting
components is 4, while for capillary wavesit is 3.
It has been argued earlier [Glazman, 1992] that intermittently occurring, rare events of
steep and breaking waves (characterized by a locally high nonlinearity, hence a large, or

(2.11)

even infinite, number of interacting Fourier components forming individual highly non-
linear wavelets), result in an increased mean (over a large time interval and large surface
area) value of v. While this v may be substantially greater than the minimum resonant
number appearing in WI”]’, the energy and action transfer may still be dominated by the
weakly nonlinear inertial cascade. Thus, the "cffective” v is introduced as an unknown
function of the problem, the assumption of locality of wave-wave interactionsin the
wavenumber space remaining in force, 1 et us notice that the turnover time given by (2.8)
for the highest-order term in (2,10) is the slowest of all the times for “partial” fluxes in
(2.10). Therefore, although the total flux of the wave action, V, ¢ 7°(k), is comprised of
many partial fluxes /3 1,, etc., the appropriate characteristic time scale for the integral
transfer is given by (2.8),

We consider the case when the external input is concentrated at wavenumbers below
certain kp marking the high-wavenumber boundary of the “generation range. ” Therefore,
at k > ko: p(k) = O, and the spectral flux is purely inertia. It is given by

X .
PC = [ w(kykdk L/,)(k, 0)do (2.12)
0 i)

Respectively, equation (2.9) for the inertial range yields

E,,(o,,(a,,k,,)z(v 2) . pQO (= const) (2.13)




where n2] .
Using (1.2) and (2.6), equation (2.13) resultsin

En . lel( V’-])o—(v“z)/(\”‘l )(O; 1/( V"])(I) V((on ) R (214)
_ (v-2/(v-1)
where D (0,)= [—IM—“’—")] , M(w)= [k((0)/ KI* (2.15)
M(w,)

and 1/ k=(o/g)"? gives the characteristic lengthscale of the problem (where the phase
speed is at minimum) The explicit dependence of k on @ , as follows from (1 .2), is

k(o) = u, (0)+ u,(©) , (2.16)
where
3, 4
Uy o (@) = ~—+ JD(w) and  D(w)=8 1200 (2.17)
' 1080
Based on (2.14) and (2.5), the energy spectrum is found as
\1/(V—1) -

S(w) aﬂ) W) _AW=D) | viee (2.18)

K(f/ o - 1+ 3M(w) ]
where  is a ("Kolmogorov") constant of proportionality. “I'he short-wave limit of
(2. 18) is obtained by setting M(w)— o~ , hence @, (@) — 1. In a specia case of v=3,
this yields the Zakharov-Filonenko spectrum [Zakharov and Filonenko, 1967] of weakly
nonlinear capillary waves. It is also easy to check that for v=4, the long-wave limit of
(2. 18) yields the Zakharov-Filonenko spectrum [Zakharov and Filonenko, 1966] of gravity
waves.

3. Wave spectra
Relationships between the energy spectrum (2. 18) and the spectra of surface height and
surface gradient (i.e., wave slope) arc more complicated than those for purel y gravity and
purely capillary waves. Specifically, as follows from (2.2), the spectrum Of surface height
variation is related to (2.18) by
Sp(@)=—D)__
pell+M(@)]
It iseasy to verify that (3.1) reduces to the well-known Zakharov-Filonenko and Phillips
spectra when the appropriate limits are t aken.  in the wavenumber domain, the two-
dimensional spectrum of surface height variation (omitting the angular spread factor,
Y(0,k)) isfound as
Fo(k)=k [S (w)—df] (3.2

w=a(k)

(3.1)

For smplicity, wc assume the following normalization condition for Y’ (O, &):




19(0,)d0 = 1 (3.3)
~n

The two-dimensional spectrum of the wave slope modulus (again, the angular spread factor

Y40, k) is omitted) is found as
Jkgl14 3M (k)]

, e S@®)

4 e 2 h ~f1 1111\13/2 34
Fyn(®) = KTy () = 55t 4 31058 (34)
It is useful to present these results in a nondimensional form by scaling all variables as

follows:
K = Kx, 0=0m, 0= —L2 50 S(Q) = S’ , (3.5)
(/%Y apo

74 and k = (of 0) “In terms of K and £2 , the dispersion law

where @ = (g3/ o)
(1.2) takes the form

Q*=K+K> (3.6)
‘I’he non-dimensional spectrum of wave energy becomes:

o . 21v-1 P (Q) A4(V—_2)_ - vi(v-]
S(Q) = AY(v-DH_2vise /(v-1) 3.
) Q v-1 [ -’14 3K (Q)f2 3.7)

and the non-dimensional spectrum of wave slope is:

2 K (1+3K?
Fy,(K)- 2\47(—;%3/—2—)&9(1()) (3.8)

~ KZ
where Fy,, (K)=-—Fy,,(k
Vn( ) o Vn( )

nipari with I ions

‘J’o compare these results with the laboratory measurements by Jihne and Riemer
[1990] (conducted in alarge wave tank -100 m length), wc need the “ saturation function”
Bk)= kszn (K). An example of the J&R measurements is reproduced in Fig. 1. in the
non-dimensional form, this is B(X) = K217‘Vn(1() where B(X) = B(k) | . The values of
O can be expressed via external parameters. Specifically, the energy flux is given by

Q=(p./p,)CU* (4.1)

where the density ratio is of order 10-3 and the integral transfer coefficient of the wave
energy, C,, is somewhere between 0.02 and 0.05 [Phillips, 1985; Glazman,1993]. Yor
the range of wind speed values tested in the J&R experiment, the non-dimensional energy
flux varies between 0.5 and 30.

In principle, v can be related to the energy flux Q and the magnitude of the wave
spectrum F(kg) at the low-frequency boundary ko of the given inertial subrange
[Glazman, 1992], which would require matching (2.18) to a known spectrum of gravity




waves. in other words, a “rigorous’ determination of v require.s consideration of the
whole wave-generation problem - a grand task that would take us wc]] beyond the scope of
the present work. Besides, a rigorous determination of v might actually be irrelevant with
respect to awave tank situation. indeed, laboratory experiments greatly limit the wave age
by inhibiting the development of the inertial cascade in the gravity range and thus cresting
in that range a highly artificia physical situation, Therefore, we shall pick several values of
v and Q which appear reasonable. In particular, v should be an increasing function of
wind (hence, of Q), Moreover, this function must display a saturation effect, i.e., its
growth with an increasing O should Slow down at high values of the latter.

According to (4.1) and Fig. 1, values O = 0.5, 1.0, 5,0 and 20 arc in the range of
wind speeds tested by J&R . The theoretical predictions of 3(K) areillustrated in Fig. 2.
Evidently, our curves arc in reasonable agreement with the measurements. “I”he comparison
aso yields an estimate of the Kolmogorov constant: o=0.01. The set of v selected in Fig,.
2 can be plotted against Q, Fig. 3, or against wind speed, Yig. 4- using (4.1). It is aso
uscful to derive an empirical fit based on Fig. 4. Theresult is:

- 10(1-;]?7) (4.2)

where U isin m/sec.

The main quantitative discrepancy between the theoretically predicted spectrum and the
measured spectrum is that the measured spectrum starts falling off at wavenumbers roughly
twice those predicted in Fig. 2. Thismight be attributed in part to the fact that the surface
tension coefficient characterizing a wave tank situation can hardly be as high as that for
pure water (70 dynfcm). If wc reduce o by half, the quantitative agreement with the
measured data will be much better. Tlowever, a more important reason for the
disagreement is that we have used an assumption of a small wave slope to derive (2.2)
from (1. 1), This assumption is likely to be violated in a wave tank experiment, and
higher-order terms in the expansion of the square root in (1. 1) may have to be taken into
account. In principle, the present heuristic approach makes such a refinement possible.
However, with respect to sea waves, it is hardly justified.
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